If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9n^2+9n+9=0
a = -9; b = 9; c = +9;
Δ = b2-4ac
Δ = 92-4·(-9)·9
Δ = 405
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{405}=\sqrt{81*5}=\sqrt{81}*\sqrt{5}=9\sqrt{5}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9\sqrt{5}}{2*-9}=\frac{-9-9\sqrt{5}}{-18} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9\sqrt{5}}{2*-9}=\frac{-9+9\sqrt{5}}{-18} $
| -12a-13=-3 | | X+21/2x+10x=31 | | 3x-4+7=2x-11+2x | | 3/4h+3=12 | | 18c+-16c+9c+12c-18c=-20 | | -n-7n=-8n-4n+6 | | 5x+x=5x-4 | | -128=8(8+6x) | | 4x-1-16=2x-4+2x-1 | | 18c+16c+9c+12c-18c=-20 | | 11r+80=16 | | 12x+12=12x-15 | | 2x×7=22× | | 11p-4=139 | | 10n*3=8n | | 8-2/3x=0 | | -1/6(2x+12=-1/3x+12 | | 350x+22000=410x+16000 | | 8v=5v+15 | | x+9=9+6x | | 24x=18x+42 | | 2x-2=-4x-26 | | 84=-4(2a-5) | | 4/2z=-12 | | -3x+3=14-4x | | (m/9)+7=3 | | (N+10)3=8n | | n^2+4n-23=-8 | | 2x+3=102-7x | | x+53+70+64=180 | | 10n(3)=8n | | 2(4x+2)=-5(3x-1) |